Wildlife 311/511 – Quantitative Methods for Wildlife and Fisheries Research and Management 2020 Spring – Tentative Course Syllabus

Professor: Jason Riddle Office: TNR 265 Phone: 715-346-3224 Email: Jason.Riddle@uwsp.edu Office Hours: Wednesdays 12-1:50pm, or by appointment Class Meeting Times: Section 1 (Tuesdays and Thursdays 12:30PM-1:45PM TNR 352) Section 2 (Tuesdays and Thursdays 2:00PM-3:15PM TNR 352).

Learning Outcomes: I don't want you to be afraid of statistics. I want you to love them and understand how they can help you as a natural resource manager/scientist. Students who satisfactorily complete this course should be able to:

- 1) Define what statistics are and why we need them;
- Recognize different data types and choose appropriate graphing techniques for each type;
- 3) Apply and communicate some basic fundamentals of sampling and experimental design;
- 4) Recognize the close relationship between management and experimentation;
- 5) Design your own simple experiments and critique other's experimental design;
- 6) Select the most appropriate parametric and non-parametric tests for a particular hypothesis; and
- 7) Communicate some of the current and future trends in Wildlife statistics.

Prerequisites/Co-requisite: MATH 255 – Elementary Statistical Methods. It also will be helpful if you already have taken a Calculus course.

Textbook: The required textbook for this course is McKillup (2011) *Statistics Explained: An Introductory Guide for Life Scientists,* 2nd Edition, Cambridge University Press. The book is available as a rental, but I <u>highly recommend</u> that you purchase a copy of your own.

Canvas: Most course material and your grades will be available on Canvas.

Classroom Climate: It is critical that you feel comfortable exploring your own ideas and asking questions in this class. Please help me to create a classroom that facilitates questions and conversations about the material.

Course Schedule:

Week 1

- 1/21 Introduction to the course
- 1/23 Why bother with statistics? (Chapters 1 and 2)

Week 2

- 1/28 Hypotheses, sample collection, and experimental design (Chapters 3 and 4)
- 1/30 Hypotheses, sample collection, and experimental design (Chapters 3 and 4)

Week 3

- 2/4 Hypotheses, sample collection, and experimental design (Chapters 3 and 4)
- 2/6 Hypotheses, sample collection, and experimental design (Chapters 3 and 4)

Week 4

- 2/11 Data types, visualization, and communication (Chapter 3)
- 2/13 Data types, visualization, and communication (Chapter 3) & Some probability basics (Chapters 6 and 7)

Week 5

- 2/18 Exam 1
- 2/20 Introduction to Parametric Statistics and descriptive statistics for populations and samples

Week 6

- 2/25 To Be Determined
- 2/27 Descriptive statistics for populations and samples

Week 7

- 3/3 Z-tests and t-tests (Chapters 9 and 10)
- 3/5 Z-tests and t-tests (Chapters 9 and 10)

Week 8

- 3/10 Z-tests and t-tests (Chapters 9 and 10)
- 3/12 Single factor ANOVA (Chapter 11)

Week 9

- 3/17 SPRING BREAK
- 3/19 SPRING BREAK

Week 10

- 3/24 Single factor ANOVA (Chapter 11)
- 3/26 Follow-up tests (Chapter 12)

Week 11

- 3/31 Two factor ANOVA (Chapter 13)
- 4/2 Two factor ANOVA (Chapter 13)

Week 12			
4/7	Exam 2		
4/9	Simple linear regression (Chapters 16 and 17)		
Week 13			
4/1	Simple linear regression (Chapters 16 and 17)		
4/1	Introduction to Nonparametric Statistics and Chi-square tests		
Week 14			
4/2	Chi-square tests & Mann-Whitney test (Chapter 21)		
4/2	Mann-Whitney test (Chapter 21) and Kruskal-Wallis test		
Week 15			
4/2	Information-Theoretic approaches		
4/3	Information-Theoretic approaches		
Week 16			
5/5	Undergraduate presentations (Chapter 5)		
5/7	Bayesian approaches		
Final Exam			

Section 1: Tuesday, May 12th from 8:00AM to 10:00AM

Section 2: Thursday, May 14th from 8:00AM to 10:00AM

Assignments and Scoring:

Written Assignment	50pts
Exam 1	100pts
Exam 2	100pts
Group Project	150pts
Problem Sets	250pts
Final Exam	200pts
Total	850pts

Grade	%
А	93+
A-	90-92
B+	87-89
В	83-86
В-	80-82
C+	77-79
С	73-76
C-	70-72
D+	67-69
D	60-66
F	≤ 59

W